
i
i

“NLMS_478” — 2018/8/17 — 16:44 — page 20 — #20 i
i

i
i

i
i

20 FEATURES

How Graph Theory Can Help Control Cattle Diseases

JESS ENRIGHT

I think that everyone can bene�t from a little graph theory — in this article I argue that this includes cows. I’ll
describe several ways that a British cattle dataset can be interpreted as a graph, and outline some algorithmic
work on optimally modifying these graphs to limit worst-case disease outbreaks.

As anyone who has spent time on a rail journey
through the British countryside will know, there
are a lot of sheep and cattle in Britain. A large
amount of information is recorded about the man-
agement of these animals, including careful recording
of their movements between farms and markets.
I �rst encountered cattle trading datasets in 2011,
when I started a postdoctoral appointment at the
University of Glasgow as part of a quantitative epi-
demiology group, and since then I have joined many
other researchers in thinking about how considering
British cattle movements as a network or graph can
help us detect and control disease.

While cattle movement datasets in Britain may not
be big in the “big data” sense, they’re also not small.
At the most recent count, there were about 9.8
million cattle in the United Kingdom1, held on over
75,000 agricultural holdings. Movements of these
cattle between agricultural holdings are recorded and
reported to British government, and collected into
a central database. This extensive dataset is invalu-
able for modelling infectious diseases of cattle, as
well as monitoring the operation of the industry as
a whole. Because of the established importance of
these animal movements in major outbreaks of foot-
and-mouth disease, and as a risk factor for bovine
tuberculosis, there has been a very large amount of
modelling, statistical, and simulation work using the
cattle movement database, including work from a
network science perspective.

In this article, I’ll outline some of the work that has
been done on cattle movements in Britain, with a
focus on how graph theory can contribute. First, I
talk about the cattle movement dataset and several
di�erent ways of representing it as a graph, and
spend some time on how we can incorporate tempo-
ral information into this graph. Then I’ll move on to
a discussion of how the properties of these graphs
have let us make progress on optimal graph modi�-
cation problems for limiting worst-case disease.

From movements to graphs

The British Cattle Movement Service dataset contains
movement records for individual animals, including
the date of the movement, as well as births and
deaths. It is one of my favourite datasets because it
is large, detailed, has been collected for more than a
decade, and is generally considered to be reliable.

When making a graph out of the cattle movement
dataset, the �rst thing to decide is what entities will
be vertices, and what contacts will be recorded as
edges. The most common approach is to take the set
of farms as the vertex set, with an edge between two
farms if there has been animal trade between them
over some time period of interest, but this is far from
the only option. Sometimes a larger aggregation is
more appropriate: for example, if we’re looking at
regional trade perhaps the counties of Britain should
form the vertex set. Or, perhaps we need closer gran-
ularity, and take the set of individual bovines as the
vertex set — of course, this may result in a larger
graph than we are prepared to deal with, as at any
given time there are approximately 9 million cattle
living in Britain!

For the moment, let’s say we take the set of agricul-
tural holdings (including farms, markets, etc.) as our
vertex set. What about edges? As I mentioned, a com-
mon choice is to link two agricultural holdings with
an undirected edge if an animal has moved between
them within some time window. This choice throws
away a lot of potentially useful information, including
the direction, weight, and timing of a contact. As
methods and and available software have developed,
these extra pieces of information are being more
frequently used, and the cattle trading graph might
be considered as a directed (as in the bottom left of
Figure 1), weighted, or temporal graph. We’ll return
to the idea of a temporal graph later in this article.

1https://www.gov.uk/government/statistics/farming-statistics-livestock-populations-at-1-december-2016-uk
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The majority of cattle trades in Britain are conducted
through a relatively small number of auction markets.
This means that in the graph in which both farms and
markets occur in the vertex set, there are a relatively
small number of vertices (the markets) with very
high degree, and many vertices of comparatively low
degree. More than that, the structure of the graph
is relatively simple: the majority of edges form a
hub-and-spoke-like graph. This sort of structure can
make many computationally di�cult problems much
easier to solve, but may not be appropriate for every
disease setting.

A slow-spreading disease that requires close contact
to spread between animals is unlikely to spread at
a market, and so sometimes it may be more appro-
priate to consider a market-stripped version of this
graph in which we remove the markets and record a
movement of an animal from farm u to farm v via
a market as an edge from u to v (bottom right of
Figure 1).

Animal1,2018/01/01,Farm_A,Market_1
Animal1,2018/01/01,Market_1,Farm_B
Animal2,2018/01/01,Farm_A,Market_1
Animal2,2018/01/01,Market_1,Farm_B
Animal1,2018/02/01,Farm_B,Market_1
Animal1,2018/02/01,Market_1,Farm_C
Animal3,2018/01/15,Farm_C,Market_2
Animal3,2018/01/15,Market_2,Farm_B

Farm_A

Farm_B

Farm_C

Market_1

Market_2

(Farm_A,Market_1)
(Market_1,Farm_B)
(Farm_B,Market_1)
(Market_1,Farm_C)
(Farm_C,Market_2)
(Market_2,Farm_B)

Farm_A

Farm_B

Farm_C

(Farm_A,Farm_B)
(Farm_B,Farm_C)
(Farm_B,Market_1)
(Farm_C,Farm_A)

Animal1,2018/01/01,Farm_A,Market_1
Animal1,2018/01/01,Market_1,Farm_B
Animal2,2018/01/01,Farm_A,Market_1
Animal2,2018/01/01,Market_1,Farm_B
Animal1,2018/02/01,Farm_B,Market_1
Animal1,2018/02/01,Market_1,Farm_C
Animal3,2018/01/15,Farm_C,Market_2
Animal3,2018/01/15,Market_2,Farm_B

Farm_A

Farm_B

Farm_C

Market_1

Market_2

(Farm_A,Market_1)
(Market_1,Farm_B)
(Farm_B,Market_1)
(Market_1,Farm_C)
(Farm_C,Market_2)
(Market_2,Farm_B)

Farm_A

Farm_B

Farm_C

(Farm_A,Farm_B)
(Farm_B,Farm_C)
(Farm_B,Market_1)
(Farm_C,Farm_A)

Figure 1. Examples of graphs derived from cattle
movement records: at the top, a section of individual
animal movements, showing the animal ID, date of
movement, and source and destination locations. On the
bottom left, a directed graph showing an edge from u to v
if there is at least one animal movement from u to v in
the set of movements. On the bottom right, a
market-stripped graph, in which an animal’s movement
from farm u to market m to farm v on a single day is
recorded as an edge from u to v . Edge sets for the two
graphs are shown at the top of the maps.

Temporal graphs

Leaving out the temporal information when creating
a graph from cattle movements is a serious omission
that can give us a misleading picture of transmission
pathways of disease. It is no surprise that the timing
of cattle trades is important in modelling disease.
Consider the simple case of a path of three vertices,
with di�erent orderings of the edges.

1 2
u v w

2 1
u v w

Figure 2. The same graph with two di�erent assignments
of times to edges. On the top, there is a temporally
admissible path from u to w , on the bottom there is not.

If the edge from u to v occurs before the edge from
v to w , then it’s possible for an infection at u to
spread to w , and we say the path from u to v to w
is temporally admissible, whereas if the edges occur
in the other order, then it is not. In a time-ignoring
snapshot of more than a week of movements from
the GB cattle trading dataset, approximately half of
the static paths of three vertices and one �fth of the
paths of four vertices are temporally feasible when
timing is taken into account.

The detailed timing information in network datasets
like the cattle movement dataset has partially
motivated the increasing popularity of temporal or
dynamic graphs both in algorithmic graph theory
and in network science. While there are a variety
of formalisms for temporal graphs, my favourite is
one that �ts well with the cattle movement data:
a temporal graph is a pair (G = (V,E),∆), where
G = (V,E) is a graph and ∆ is a function from E to
sets of timesteps, with ∆(e ) denoting the timesteps
at which e ∈ E occurs. We can include directions or
weights in our temporal graph by allowing G to be
directed or weighted.

Because there are far more tools available for dealing
with static graphs, there have been several attempts
to capture the dynamic nature of trades in static
graphs. Vernon and Keeling [9] describe a variety
of static graphs derived from the cattle movements
with the intention of capturing the dynamic nature
of the graph. In common with many others, their
primary tool is e�ectively a sequence of graphs, with
one de�ned at each appropriate time step (in the
case of the cattle movements, usually this timestep
is a day).
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Kim and Anderson [8] use a now-popular method
that creates a static directed network in which the
vertex set is formed of multiple copies of vertices
from the temporal graph, with a vertex duplicated at
each appropriate timestep, and edges going forward
in time.

Heath et al. [7] use a line graph-like method that
incorporates explicit information about an infectious
period for a particular infectious disease of interest
to produce a static graph that captures some of the
key dynamic information: essentially, they create a
graph in which the vertices are pairs of trades and
days at which those trades occurred, and there is an
edge from one trade/time pair to another if disease
that spreads over the �rst could subsequently move
over the second.

Formally, given a directed temporal graph (G =

(V,E),∆) and an infectious period δI , they produce
a new directed graph H = (P,F ), in which the vertex
set P is composed of (e, t ) where e ∈ E and t ∈
∆(e ), and the edge set F contains an edge ((e, te )→
(f , t f )) where e = (u → v ) and f = (v → w) if and
only if te < T(f ) and t f − te ≤ δI . This static rep-
resentation captures the directionality both of the
original graph, and of time.

Seasonal trends

Great Britain has (somewhat) distinct seasons, and
so, as you might expect, there are seasonal patterns
in the cattle movement network. We can use a lim-
ited, but easy-to-calculate measure of changes in the
network over time: to compare two network snap-
shots at di�erent times, calculate the proportion of
edges in the graph that exist at both time-steps. If we
consider month-long snapshots of the cattle trading
graph, then we see a scallop-edged plot in Figure 3.
For any given month, the most similar months are
multiples of 12 months previous, and the least similar
are those in opposite seasons. For example, April of
this year is most similar to April in previous years,
and most dissimilar to November. In addition to the
seasonal e�ect, we see a gradual decrease in simi-
larity with an increase in temporal distance — the
farther in the past we look, the more dissimilar the
graph is. As you might expect, we see higher similar-
ity scores at higher levels of aggregation: when we
consider only county-to-county level edges, we see
much more similarity than at the farm-to-farm level
of detail.
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Figure 3. From [1]: A plot of the mean similarity (calculated
using a method of set similarity counting equivalent to the
Jacquard similarity) of cattle movements in Great Britain
between each month of 2011 and months up to four years
previous. The blue line shows similarity of unaggregated
movements, the yellow movements to parishes, and the
pink movements to counties. The background shaded
envelopes are the minimal areas that include the
similarity plots of each of the individual months in 2011
(the solid line is the mean over all 12 months).

Modi�cation of livestock movement graphs

A signi�cant volume of work has shown that the
strategic removal of important vertices or edges
(by a variety of measures) is far more e�ective in
decreasing simulated disease outbreak size than ran-
dom interventions — this is pleasingly logical. For
example, it is not surprising that in a network with a
relatively small number of high-degree vertices (often
dealers or markets in the cattle network), removing
those vertices will limit disease spread on the net-
work more e�ectively than removing random farms.
Gates and Woolhouse [6] provide evidence of this
e�ect for edges, using a simple edge centrality mea-
sure, and use this observation to motivate a heuristic
rewiring method to modify the cattle trading net-
work with the aim of limiting disease spread. Roughly
speaking, Gates and Woolhouse select edges with a
high potential to spread disease across the network,
and rewire them using a heuristic matching process
that preserves in- and out-degree. Their approach
gives networks with lower simulated endemic disease
prevalence than the baseline real-data networks.

Given that removing edges and vertices strategically
can make a large di�erence in expected disease
prevalence, we might address the idea in a more
formal algorithmic sense and ask: given a graph and
a budget for edge or vertex removal, what is the best
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possible choice? As a �rst attempt at answering this
question, Kitty Meeks and I [3] focussed on removing
edges to limit the maximum connected component
size in a graph, as maximum component size is an
upper bound on the largest possible outbreak size.

In general, this problem is NP-complete, so we expect
that it cannot be solved e�ciently on general graphs.
However, if we restrict the graphs we are interested
in to a limited class, we can make progress toward
an e�cient algorithm (by which we mean one that
takes computational time asymptotically bounded
by a polynomial function of the size of the input).

We focussed our attention on graphs of limited
treewidth, which are graphs admitting a certain type
of decomposition (see “Treewidth”) for two reasons:
�rst, the tree decompositions of graphs with lim-
ited treewidth have a strong history of supporting
e�cient algorithms, particularly via several key meta-
theorems that promise the existence of polynomial-
time algorithms for problems that can be encoded
in speci�ed logical frameworks, and secondly (and
possibly more remarkably), a static aggregation of
the cattle trading graph in Scotland has relatively low
treewidth.
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Figure 4. From [3]: a plot of treewidth of the static
market-stripped graph derived from cattle trades in
Scotland over increasing portions of 2013.

We created a series of aggregations of the Scottish
cattle movement graph with markets stripped over
the year 2013. For each day in 2013, we create a graph
of all movements (ignoring direction and timing) from
the beginning of the year to that day, and calculated
and plotted an upper bound on the treewidth of that
graph. Because the graph grows over the year, we
expect the treewidth to be non-decreasing, and this
is what we see in Figure 4. The entire year of move-
ments has a treewidth of at most 18, and the �rst
six months a treewidth under 10. The running time

Treewidth

A tree decomposition is an assignment of all
vertices of a graph G = (V,E) to bags at
nodes of a tree that must follow two rules:

• for every vertex v ∈ V , the set of nodes of
the tree that are assigned v must induce a
connected subtree of the tree, and

• every pair of vertices u,v that are adjacent
in G must co-occur in at least one bag on
the tree

The width of such a decomposition is one less
than the largest number of vertices assigned
to a single bag. The treewidth of a graph is
the smallest width of a tree decomposition
over all possible tree decompositions of that
graph. Here is an example of a valid tree de-
composition, reproduced from the wikimedia
commons [5].

Note that each subtree corresponding to
nodes containing a single vertex is connected,
and every pair of vertices that are adjacent
occur together at a node at least once. This
decomposition has width 2.

of a tree-decomposition-based algorithm is typically
exponential in the treewidth of the graph — a run-
ning time that is exponential in a treewidth of 10 is
perhaps not ideal, but is generally feasible, as we
discovered in a number of related computational
experiments [3].

Incorporating temporal information — Reachability sets

Where the maximum component size is an upper
bound on the size of the largest outbreak on a static
and undirected graph, the maximum reachability set
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size serves the same role in a temporal graph, either
directed or undirected.

If (G = (V,E),∆) is a temporal graph, then we say
vertex v ∈ V is reachable from vertex u ∈ V if there
is a path of edges from u to v such that every edge
occurs temporally after the one before it in the path:
that is, the path goes forward in time. The reacha-
bility set of a vertex v is the set of vertices that are
reachable from v , including v itself.

Recently, we have been investigating several
approaches to modifying temporal graphs to limit the
size of the maximum reachability set, including edge
deletion (as we did to limit component size in static
graphs), and assigning or re-ordering the times of
edges (with George Mertzios and Viktor Zamaraev).
This is very much work in progress, with current
results reported in [2, 4].

Concluding thoughts

I have only talked about cattle movements here, but
there are a wide variety of agricultural datasets that
I’ve enjoyed viewing as graphs. I believe that graph
theory has a lot to contribute to the analysis and
modelling of the processes and systems that produce
these datasets.

When we were trying to �nd small edge deletions to
limit component sizes in the cattle trading graphs
in Scotland, we were lucky that the graphs had low
treewidth, which we were able to exploit to devise
and implement an algorithm. In the future, several
of my collaborators and I are planning to investigate
why these graphs have low treewidth, and what other
properties and classes arise in data-derived graphs
that we can exploit for the design of e�cient algo-
rithms. There are some obvious candidates — for
example, graphs derived from geographical proxim-
ity are often planar, or may be well-described with
random geometric models.

There is a lot of work to be done on optimisation
problems on these agriculturally-derived graphs, par-
ticularly on graphs that incorporate direction or tem-
poral information. While there has been a recent
boom of activity in the algorithmics of temporal
graphs, there is still an enormous gulf between the
large collection of algorithmic machinery available for
static graphs, and that available for temporal graphs,
even when the temporal graph is fully speci�ed. Data-

driven problems like those I’ve encountered working
with cattle movements can bene�t signi�cantly from
these recent and coming advances, as well as jump-
starting work on theoretically appealing algorithmic
questions — I’m looking forward to being inspired
by cows for years to come!
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